# Retinex Image Enhancement: Applications to Medical Images

Zia-ur Rahman
TruView Imaging Company
zrahman@truview.com

Glenn A. Woodell Daniel J. Jobson

NASA Langley Research Center
g.a.woodell@larc.nasa.gov d.j.jobson@larc.nasa.gov

July 17, 2001

# Retinex Image Enhancement—General Information

- The Multiscale Retinex with Color Restoration—Retinex for short—is a general purpose image enhancement algorithm.
- It is patented:
  - US patent #5,991,456, and two others pending.
  - Australia patent #713706 (International #US97/07996)
  - Pending in several other European and Asian countries.
- TruView Imaging Company, Hampton, Virginia holds the exclusive licensing rights.

# Retinex Image Enhancement—Potential Applications

- Any medical imaging application where automatic contrast enhancement and sharpening is needed. Potential areas of impact may include
  - Digital X-ray
  - Digital Mammography
  - CT scans
  - MRI
- Telemedicine applications where bandwidth between patient and doctor poses a potential bottleneck. The Retinex compacts the high input dynamic range, potentially reducing the bandwidth requirement.

### Retinex Image Enhancement—Background

- The Retinex provides automatic
  - Dynamic range compression: i.e., the ability to represent large input dynamic range into relatively small output dynamic range.





- Sharpening: i.e., compensation for the blurring introduced into the image by the image formation process. This allows fine details to be seen more easily than before.





- Color constancy: i.e., the ability to remove the effects of the illumination from the output. This allows consistency of output as the illumination changes.



### Retinex Image Enhancement—Technical

• The Retinex takes an input digital image I and produces an output image R on a pixel by pixel basis in the following manner:

$$R(x,y) = \log (I(x,y)) - \log (I(x,y) * M(x,y))$$
$$= \log \left(\frac{I(x,y)}{I(x,y) * M(x,y)}\right)$$

where  $M(x,y) = \exp((x^2 + y^2)/\sigma^2)$ ,  $\sigma$  is a constant which controls the extent of M, and \* represents spatial convolution.

- This non-linear transform has some interesting properties:
  - It mimics the spatial aspect of color perception by setting the output value as a function of the center (numerator in the equation) and its surround (the denominator in the equation).
  - The rationing operation in conjunction with the log function inherently perform dynamic range compression.
  - The output is independent of the illumination source.

• The input image can be written as the product of two components:  $\rho(x,y)$  the reflectance component which represents the light reflected from all the objects in the scene being imaged, and i(x,y) which represents the illumination component. That is,

$$I(x,y) = i(x,y)\rho(x,y).$$

• Since the illumination component varies very slowly across the scene,  $I(x,y) \approx I_o \rho(x,y)$ , and

$$R(x,y) = \log \left( \frac{I_o \rho(x,y)}{I_o \rho(x,y) * M(x,y)} \right)$$
$$= \log \left( \frac{\rho(x,y)}{\rho(x,y) * M(x,y)} \right)$$

• By performing the same operation on each color channel, the output color image can be written as

$$R_i(x,y) = \log\left(\frac{I_i(x,y)}{I_i(x,y) * M(x,y)}\right) \quad i \in \{R,G,B\}$$

- $R_i(x, y)$  is dependent upon the size of the surround mask M(x, y) which is parametrized by  $\sigma$ .
- Different values of  $\sigma$  enhance different features of the input image: large values provide good spectral information, and small values provide good spatial information.
- So,

$$R_{i}(x,y) = \frac{1}{K} \sum_{k=0}^{K} \log \left( \frac{I_{i}(x,y)}{I_{i}(x,y) * M_{k}(x,y)} \right), i \in \{R, G, B\}$$

### Retinex—Examples

- Many digital medical images suffer from lack of contrast and sharpness.
- The Retinex automatically provides both enhanced contrast and sharpness.
- The following slides show the application of the Retinex image enhancement algorithm to
  - X-rays
  - Mammograms
  - CT scans
  - Other medical images

### Retinex—Examples—X-rays





# Retinex--Examples--X-rays





### Retinex--Examples--X-rays





## Retinex—Examples—Mammograms





### Retinex—Examples—Mammograms



### Retinex—Examples—CT scans





# Retinex—Examples—CT scans



# Retinex—Examples—Comparisons

### Retinex—Examples—Comparisons









### Retinex--Examples--Other





# ${\bf Retinex--Examples--Other}$





# ${\bf Retinex--Examples--Other}$





### **Contact Information**

Zia-ur Rahman
 (757) 221-3479; zrahman@truview.com
 TruView Imaging Company

10 Basil Sawyer Drive

Hampton, VA 23666

• Glenn A. Woodell

Daniel J. Jobson

g.a.woodell@larc.nasa.gov

d.j.jobson@larc.nasa.gov

(757) 864-1510

(757) 864-1521

NASA Langley Research Center

MS 473, 8 North Dryden Street

Hampton, VA 23681

• URL: http://dragon.larc.nasa.gov/retinex